An efficient and stable numerical method for the Maxwell–Dirac system

نویسندگان

  • Weizhu Bao
  • Xiang-Gui Li
چکیده

In this paper, we present an explicit, unconditionally stable and accurate numerical method for the Maxwell–Dirac system (MD) and use it to study dynamics of MD. As preparatory steps, we take the three-dimensional (3D) Maxwell– Dirac system, scale it to obtain a two-parameter model and review plane wave solution of free MD. Then we present a time-splitting spectral method (TSSP) for MD. The key point in the numerical method is based on a time-splitting discretization of the Dirac system, and to discretize nonlinear wave-type equations by pseudospectral method for spatial derivatives, and then solving the ordinary differential equations (ODEs) in phase space analytically under appropriate chosen transmission conditions between different time intervals. The method is explicit, unconditionally stable, time reversible, time transverse invariant, and of spectral-order accuracy in space and second-order accuracy in time. Moreover, it conserves the particle density exactly in discretized level and gives exact results for plane wave solution of free MD. Extensive numerical tests are presented to confirm the above properties of the numerical method. Furthermore, the tests also suggest the following meshing strategy (or e-resolution) is admissible in the ‘nonrelativistic’ limit regime (0 < e 1): spatial mesh size h 1⁄4 OðeÞ and time step 4t 1⁄4 OðeÞ, where the parameter e is inversely proportional to the speed of light. 2004 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A time-splitting spectral scheme for the Maxwell–Dirac system

We present a time-splitting spectral scheme for the Maxwell–Dirac system and similar time-splitting methods for the corresponding asymptotic problems in the semi-classical and the non-relativistic regimes. The scheme for the Maxwell– Dirac system conserves the Lorentz gauge condition is unconditionally stable and highly efficient as our numerical examples show. In particular, we focus in our ex...

متن کامل

Efficient and Stable Numerical Methods for the Generalized and Vector Zakharov System

In this talk, we present efficient and stable numerical methods for the generalized Zakharov system (GZS) describing the propagation of Langmuir waves in plasma. The key point in designing the methods is based on a time-splitting discretization of a Schroedinger-type equation in GZS, and to discretize a nonlinear wave-type equation by pseudospectral method for spatial derivatives, and then solv...

متن کامل

SADDLE POINT VARIATIONAL METHOD FOR DIRAC CONFINEMENT

A saddle point variational (SPV ) method was applied to the Dirac equation as an example of a fully relativistic equation with both negative and positive energy solutions. The effect of the negative energy states was mitigated by maximizing the energy with respect to a relevant parameter while at the same time minimizing it with respect to another parameter in the wave function. The Cornell pot...

متن کامل

EFFICIENT NUMERICAL DYNAMIC ANALYSIS OF TENSION LEG PLATFORMS UNDER SEA WAVE LOADS

However it is possible to use of numerical methods such as beta-Newmark in order to investigate the structural response behavior of the dynamic systems under random sea wave loads but because of necessity to analysis the offshore systems for extensive time to fatigue study it is important to use of simple stable methods for numerical integration. The modified Euler method (MEM) is a simple nume...

متن کامل

On the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative

The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004